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Abstract 

Accurately mapping impervious surface dynamics has great scientific significance and application value 10 

for urban sustainable development research, anthropogenic carbon emission assessment and global ecological 

environment modeling. In this study, a novel and accurate global 30 m impervious surface dynamic dataset 

(GISD30) for 1985 to 2020 was produced using the spectral generalization method and time-series Landsat 

imagery, on the Google Earth Engine cloud-computing platform. Firstly, the global training samples and 

corresponding reflectance spectra were automatically derived from prior global 30 m land-cover products after 15 

employing the multitemporal compositing method and relative radiometric normalization. Then, 

spatiotemporal adaptive classification models, trained with the migrated reflectance spectra of impervious 

surfaces from 2020 and pervious surface samples in the same epoch for each 5°×5° geographical tile, were 

applied to map the impervious surface in each period. Furthermore, a spatiotemporal consistency correction 

method was presented to minimize the effects of independent classification errors and improve the 20 

spatiotemporal consistency of impervious surface dynamics. Our global 30 m impervious surface dynamic 

model achieved an overall accuracy of 91.5% and a kappa coefficient of 0.866 using 18,540 global time-series 

validation samples. Cross-comparisons with four existing global 30 m impervious surface products further 

indicated that our GISD30 dynamic product achieved the best performance in capturing the spatial 

distributions and spatiotemporal dynamics of impervious surfaces in various impervious landscapes. The 25 

statistical results indicated that the global impervious surface has doubled in the past 35 years, from 5.116×105 

km2 in 1985 to 10.871×105 km2 in 2020, and Asia saw the largest increase in impervious surface area 

compared to other continents, with a total increase of 2.946×105 km2. Therefore, it was concluded that our 

global 30 m impervious surface dynamic dataset is an accurate and promising product, and could provide vital 

support in monitoring regional or global urbanization as well as in related applications. The global 30 m 30 

impervious surface dynamic dataset from 1985 to 2020 generated in this paper is free to access at 

http://doi.org/10.5281/zenodo.5220816 (Liu et al., 2021b). 

1. Introduction

Impervious surfaces are usually defined as surfaces “preventing the surface water from penetrating into

the ground” and are composed of anthropogenic materials, such as steel, cement, asphalt, bricks and stone 35 

(Chen et al., 2016; Weng, 2012; Zhang et al., 2020). Over the past few decades, with the rapid growth of the 

population and the economy, impervious surfaces have been undergoing dramatic expansion, especially in 

developing countries (Gong et al., 2019; Kuang, 2020). Based on the statistics of the United Nations in 2014, 

54% of the world’s total population lives in cities, and this proportion is expected to reach 66% in 2050 
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(Science, 2016). As an indicator of the intensity of human activities and economic development, the dynamic 40 

information of impervious surfaces plays a significant role in urban planning (Li et al., 2015), biogeochemical 

cycles (Zhang and Weng, 2016), greenhouse gas emissions and urban heat island effects (Gao et al., 2012; 

Zhou et al., 2018), and urban sustainable development pathways (Liu et al., 2020b). Therefore, understanding 

and quantifying global impervious surface spatiotemporal dynamics is critical. 

In recent years, with the continuous improvement of remote sensing techniques as well as computer 45 

storage and computing capabilities, global impervious surface monitoring has been undergoing a transition 

from the coarse spatial resolution of 1 km to the fine resolution of 30/10 m (Corbane et al., 2020; Gong et al., 

2020; Liu et al., 2018; Liu et al., 2020b; Schneider et al., 2009; Zhao et al., 2020; Zhou et al., 2018). 

Specifically, coarse impervious surface products primarily use time-series nighttime light datasets (including 

DMSP and VIIRS NTL imagery) (Xie and Weng, 2017; Zhao et al., 2020) and MODIS imagery (Huang et al., 50 

2020; Schneider et al., 2010) to capture global impervious surface dynamics; for example, Huang et al. (2021) 

used a fully automated mapping method to produce global 250 m urban area products for 2001 to 2018 using 

time-series MODIS imagery. Zhou et al. (2018) used the Defense Meteorological Satellite 

Program/Operational Linescane System’s nighttime light data to develop temporally and spatially consistent 

global 1 km urban maps for 1992 to 2013. Although these coarse global impervious surface dynamic products 55 

could capture global urban expansion trends, they are unsuitable for many regional applications, because a 

large quantity of broken and small-sized impervious surfaces are missed in coarse remote sensing imagery 

(Gong et al., 2020). Recently, benefiting from the improvements and maturity of cloud computing platforms 

(such as Google Earth Engine (Gorelick et al., 2017)), many global 30 m multitemporal impervious surface 

products have been produced using long time-series Landsat imagery (Florczyk et al., 2019; Gong et al., 2020; 60 

Liu et al., 2018; Liu et al., 2020b). For example, Liu et al. (2018) proposed a new index to develop 

multitemporal global 30 m urban land maps for 1990 to 2010 with 5-years intervals. Gong et al. (2020) used a 

combination of “exclusion–inclusion” and “temporal check” methods to generate an annual global 30 m 

artificial impervious surface area dataset for 1985 to 2018. However, Liu et al. (2021a) comprehensively 

reviewed and analyzed the accuracies and spatial consistencies of seven global 30 m impervious surface 65 

products, and found significant inconsistency and uncertainty inherent within these datasets, while Zhang et al. 

(2020) quantitatively evaluated six global 30 m impervious surface products using 11,942 validation samples, 

finding unsatisfactory accuracies and low levels of agreement between them. Therefore, an accurate global 30 

m impervious surface dynamic product using an efficient mapping method is still urgently needed. 

Over the past few decades, many methods have been proposed for generating regional or global 70 

multitemporal impervious surface products. Generally, these methods can be divided into two groups: 

time-series change detection (Jing et al., 2021; Li et al., 2018; Song et al., 2016) and multitemporal 

independent classification/extraction (Gong et al., 2020; Liu et al., 2020b; Zhang and Weng, 2016). The 

time-series change detection strategy used change detection models to determine the break points in 

continuous Landsat observations. As this strategy makes full use of the correlations inherent within 75 

time-series imagery, it has higher robustness and a greater ability to capture urbanization time and frequency 

(Liu et al., 2019). However, as impervious surfaces are usually nonlinear, with high temporal and spatial 

heterogeneity, impervious surface monitoring is a highly difficult and challenging task, especially for arid or 

semi-arid areas (Reba and Seto, 2020; Sexton et al., 2013). Zhu et al. (2019) demonstrated that the newest 

continuous monitoring of land disturbance (COLD) method still suffer from an omission error of 27% and a 80 
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commission error of 28%. Meanwhile, the monitoring efficiency of the time-series change detection strategy 

is very low, because it uses pixel-by-pixel modeling and continuous Landsat imagery.  

The multitemporal independent classification/extraction strategy generates multiple temporally 

independent impervious surface maps, and then derives “from–to” information through per-pixel comparison, 

so the means of generating multiple temporally independent impervious surface maps is the key issue of the 85 

strategy. Our previous study (Zhang et al. (2020)) concluded that there are three ways to generate independent 

impervious surface maps including: spectral mixture analysis (Wu, 2004; Zhuo et al., 2018), the spectral 

index-based method (Gao et al., 2012; Liu et al., 2018) and the image classification method (Zhang and Weng, 

2016; Zhang et al., 2020). However, the spectral mixture analysis had great difficulty in finding the optimal 

endmembers, especially for long time-series monitoring. The spectral index-based method was simpler and 90 

more efficient than the other two strategies, but it encountered great difficulty in identifying the optimal 

threshold for deriving the impervious pixels from pervious surfaces, especially in arid areas (Sun et al., 2019). 

The image classification strategy uses training samples to build the classifiers for identifying impervious 

surfaces, and performed well in complex impervious surface mapping (Okujeni et al., 2013; Zhang et al., 

2020). However, collecting training samples is a time-consuming and labor-intensive task, especially for 95 

large-area time-series impervious surface monitoring. Fortunately, the spectral generalization strategy has 

been demonstrated to perform very well in automatic land-cover mapping and monitoring (Phalke and 

Özdoğan, 2018; Woodcock et al., 2001; Zhang et al., 2019). For example, Zhang et al. (2019) employed the 

reflectance spectra from the earlier MCD43A4 NBAR dataset to automatically generate land-cover maps in 

China using multitemporal Landsat imagery, and achieved an overall accuracy of 80.7%.  100 

As impervious surfaces are usually nonlinear with high temporal and spatial heterogeneity, impervious 

surface monitoring is a challenging task. The aim of the study was to automatically produce an accurate and 

novel global 30 m impervious surface dynamic dataset (GISD30) for 1985 to 2020 by combining time-series 

Landsat imagery and the spectral generalization method. To achieve this goal, we first migrated the 

reflectance spectra of the impervious surface and simultaneously transferred the training samples of pervious 105 

surfaces to other periods in order to automatically monitor the spatiotemporal dynamic of impervious surface 

changes from 1985 to 2020. Then, we combined the local adaptive model and time-series Landsat imagery to 

independently produce impervious surface time-series products. Lastly, a spatiotemporal consistency 

correction method was applied to independent impervious surface products to minimize the effects of 

classification errors and ensure the reliability and spatiotemporal consistency of the final dynamic impervious 110 

surface dataset. The results indicate that our global 30 m impervious surface dynamic dataset was accurate, 

and could provide vital support for monitoring regional or global urbanization and performing related tasks. 

2. Datasets 

2.1 Time-series Landsat imagery 

As a single Landsat mission cannot cover the whole period of 1985 to 2020 (Roy et al., 2014), all 115 

available Landsat imagery, including Landsat 4, 5, 7 and 8, archived on the GEE computation platform, were 

collected to monitor the spatiotemporal dynamics of impervious surfaces. To minimize the scattering and 

absorption effects of the atmosphere, all Landsat imagery was corrected for the surface reflectance using the 

Land Surface Reflectance Code (LaSRC) (Vermote et al., 2016) and Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) (Vermote, 2007) algorithms. Meanwhile, poor observations 120 
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(including snow, shadow, cloud and saturated pixels) in the Landsat imagery were masked using the CFmask 

algorithm (Zhu and Woodcock, 2014), which is the official Landsat processing algorithm and is included in 

the Landsat Surface Reflectance (SR) Product Handbook (USGS, 2017). Figure 1 illustrates the spatial 

distributions of all available Landsat observations from 1985 to 2020, with intervals of 5-years; clearly, the 

availability of Landsat imagery had a significant positive relationship with the advancement of the monitoring 125 

period, mainly because later Landsat satellites had greater capacities for onboard recording and 

satellite-to-ground transmission compared with previous Landsat systems (Roy et al., 2014). In addition, as 

only Landsat 5 could provide observation imagery, and satellite-to-ground transmission capabilities were 

fairly low before 2000, the Landsat observations available for before 2000 do not cover the whole world, and 

those for 1985 are especially limited; however, it should be noted that we assumed that the land-cover in these 130 

areas with missing data would remain stable during the period. 

 

Figure 1. The spatial distributions of the available Landsat observations from 1985 to 2020, with 5-year 

intervals. 

2.2 Global 30 m land-cover product in 2020 135 

To automatically monitor the spatiotemporal dynamics of impervious surfaces, it was necessary to import 

a global 30 m land-cover product from 2020, which was used as the reference dataset for training samples in 

Section 3, and provided the broadest impervious surface information for monitoring spatiotemporal dynamics. 

In this study, the GLC_FCS30-2020 (Global Land Cover product with Fine Classification System at 30 m in 

2020) dataset, generated by combining the time-series of Landsat imagery with high-quality training data from 140 

the Global Spatial Temporal Spectra Library on the Google Earth Engine computing platform (Zhang et al., 

2021), was used, showing an overall accuracy of 82.5% and a kappa coefficient of 0.784 for the level-0 

validation system (9 basic land-cover types), and an overall accuracy of 68.7% and kappa coefficient of 0.662 

for the UN-LCCS level-2 system (24 fine land-cover types), employing 44,043 global validation samples 

(Zhang et al., 2021). It should be noted that the impervious surface layer in the GLC_FCS30-2020 dataset was 145 

independently produced by combining multisource and multitemporal remote sensing imagery, and achieved 
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an overall accuracy of 95.1% and a kappa coefficient of 0.898 (Zhang et al., 2020). The GLC_FCS30-2020 

dataset is free to access at http://doi.org/10.5281/zenodo.4280923 (Liu et al., 2020a). 

2.3 Validation dataset 

To quantitatively assess the accuracies of our impervious surface dynamic time-series products, 18,540 150 

validation samples (Figure 2), including 8,554 impervious samples and 9,986 pervious samples, covering the 

long-term time-series from 1985 to 2020, were randomly generated using the stratified random sampling 

strategy, and further interpreted on the Google Earth Engine computing platform. Using the GEE computing 

platform had obvious advantages over collecting validation samples, including: 1) storing massive amounts of 

remote sensing imagery with various spatial resolutions and time spans; 2) easy access to different remote 155 

sensing images via simplified coding (Gorelick et al., 2017). Therefore, using multisource high-resolution 

imagery archived in the GEE platform, each validation sample could be marked as "pervious surface" or 

"specific change year of impervious surface". However, as the high-resolution images from 1985 to 2000 were 

sparse, and the Landsat imagery contained observations for that period with satisfactory spatial resolution, we 

used the time-series Landsat imagery as the auxiliary dataset for visual interpretation between 1985 and 2000. 160 

Further, as the spatial heterogeneity of the impervious surface was usually higher than that of natural 

land-cover types, and land-cover transition areas were often more prone to confusion, the location of each 

validation sample in rural areas was moved to the center of the impervious object (such as buildings and 

roads), and the impervious area in a 30 × 30 m window should comprise more than 50% when identifying 

impervious samples (Zhang et al., 2020). Lastly, to minimize the influence of the interpreting experts’ 165 

subjective knowledge, each validation sample was to be independently interpreted by five experts.  

 

Figure 2. The spatial distribution of the global multitemporal impervious surface validation dataset for 

1985-2020. 

2.4 Existing multitemporal global 30 m impervious surface products 170 
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In this study, four existing multitemporal global 30 m impervious surface products, including GAIA 

(Global Artificial Impervious Area), GHSL (Global Human Settlement Layer), GlobeLand30 impervious 

surface layer and NUACI (Normalized Urban Areas Composite Index) -based maps, were used to 

comprehensively analyze the performance of our products. Specifically, GAIA was generated by combining 

the “Exclusion/Inclusion” and “Temporal Consistency” methods and applying them to time-series Landsat 175 

imagery, which provided the global annual impervious surface from 1985 to 2018 at a 30 m spatial resolution, 

with a mean accuracy of 90% using 3500 validation samples (Gong et al., 2020).  

Furthermore, the GHSL products, developed by fusing supervised and unsupervised classification 

processes to achieve a combination of data-driven and knowledge-driven processes, contained four epochs’ 

impervious surface dynamics (1970, 1990, 2000 and 2015) (Florczyk et al., 2019; Pesaresi et al., 2016), with 180 

the high overall accuracy of 96.28% and the low kappa coefficient of 0.323, verified using the open LUCAS 

(Land-Use/Cover Area Frame Survey) validation dataset for Europe (Pesaresi et al., 2016).  

Thirdly, the GlobeLand30 impervious surface layer, which was an independent land-cover type in the 

GlobeLand30 global land-cover product, was produced by combining pixel-based classification, multi-scale 

object-oriented segmentation and manual verification based on the visual interpretation of high-spatial 185 

resolution imagery (Chen et al., 2015). Meanwhile, to eliminate salt and pepper noise in the impervious 

surface layer, a minimum unit of 4 ×4 pixels was applied for each impervious surface object. In this study, 

three epochs’ (2000, 2010 and 2020) impervious surface layers were included in the GlobeLand30, and 

independent validation indicated that the accuracy of impervious surface identification was over 80% (Chen 

and Chen, 2018; Chen et al., 2016). 190 

Lastly, NUACI-based products were generated by combining the multi-temporal NUACI index and 

adaptive threshold optimization methods and applying them to the time-series Landsat and nighttime light 

imagery (Liu et al., 2018), which contained the impervious surface dynamics of seven epochs from 1985 to 

2015, with five-year intervals. Further, independent validation indicated that the NUACI-based products 

achieved overall accuracy, producer's accuracy and user's accuracy of 0.81–0.84, 0.50–0.60 and 0.49–0.61, 195 

respectively, at the global level (Liu et al., 2018). 

3. Methods 

To automatically monitor the spatiotemporal dynamics of impervious surfaces, a temporal spectral 

generalization method has been proposed in Figure 3. First, the training samples and maximum impervious 

surface area in 2020 were automatically derived from the earlier GLC_FCS30-2020 land-cover products. 200 

Secondly, based on the assumption that the land-cover transition from impervious surface to pervious surface 

was irreversible, the pervious surface samples in 2020 could be directly transferred to other periods. As for the 

impervious surface samples, as it was impossible to directly transform them, we migrated their reflectance 

spectra from 2020 to other periods to achieve the automatically monitored spatiotemporal dynamics. Thirdly, 

multitemporal local adaptive random forest classification models, trained by the migrated reflectance spectra 205 

of impervious and pervious surface samples, were applied to independently generate impervious time-series 

surface maps from 1985 to 2015. Lastly, the temporal consistency checking method was used to ensure the 

spatiotemporal consistency and logic of using this approach for monitoring the spatiotemporal dynamics of 

impervious surfaces. 
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 210 

Figure 3. The flowchart of the spectral generalization method for automatically monitoring the spatiotemporal 

dynamics of impervious surface from 1985 to 2020. 

3.1 Deriving training reflectance spectra and maximum impervious surface area 

To achieve the automatic monitoring of the spatiotemporal dynamics of impervious surfaces, two key 

measures should be taken, including: 1) ensuring the spectral consistency between reference period and other 215 

periods, which guarantees the feasibility of migrating the reflectance spectra of impervious surfaces in 2020 to 

other periods; 2) automatically deriving training samples and maximum impervious surface extent from the 

GLC_FCS30 products and other impervious surface products. 

3.1.1 Multitemporal imagery composting and relative radiometric normalization 

As our previous work (Zhang et al. (2020)) had quantitatively demonstrated that multitemporal 220 

information made a positive contribution to large-area impervious surface mapping, and the availability of 

Landsat imagery varied with the spatial distribution in Figure 1, it was necessary to decompose the time-series 

Landsat imagery into multitemporal features. Our previous work (Zhang et al. (2021)) concluded that there 

were two main options—“selection-based” and “transform-based”—for extracting multitemporal information 

from time-series imagery. Specifically, the “selection-based” option involved using user-defined criteria to 225 

select the most suitable observation from the time-series imagery. For example, the maximum NDVI 

(Normalized Difference Vegetation Index) compositing method was used to select the observation with the 

largest NDVI from the pixel-by-pixel and time-series observations. Therefore, “selection-based” composited 

imagery can still be used to characterize the actual reflective properties of the land surface. Furthermore, the 

“transform-based” method uses the transform models (Fourier transform, mathematical statistics, etc.) to 230 

composite the time-series observation band by band; for example, Zhang et al. (2020) used the statistical 

quantile method to extract multitemporal information from time-series Landsat imagery. However, it should 

be noted that “transform-based” composited imagery cannot give the actual characteristics of the land surface, 

especially in the spectral dimension.  
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In this study, we migrated the reflectance spectra of impervious surfaces in 2020 to other periods; 235 

therefore, the “selection-based” method was the optimal solution. To select the user-defined criteria to 

composite the multitemporal features, given that the best-available-pixel (BAP) method could simultaneously 

take into account four factors (sensor type, day of year, distance to cloud or cloud shadow and aerosol optical 

thickness (White et al., 2014)), it has been widely used for generating annual or seasonal cloud-free 

composited imagery (Chen et al., 2021; Liu et al., 2019). In this study, in order to further capture the 240 

multitemporal information from the time-series Landsat imagery, the seasonal BAP composited method, 

which applies the BAP compositing approach for each season, was used on time-series Landsat imagery in 

each period. Therefore, we derived four sets of seasonally composited Landsat imagery for each period. In 

addition, for each set of seasonally composited imagery, excluding those in six optical bands (blue, green, red, 

NIR, SWIR1 and SWIR2), three spectral indexes, including the normalized difference built-up index (NDBI), 245 

normalized difference water index (NDWI) and NDWI, were also imported, because some studies have 

demonstrated that these indexes help in identifying impervious surfaces (Liu et al., 2018; Zhang et al., 2020). 

Eventually, a total of 36 multitemporal spectral bands were derived using continuous 5-year Landsat imagery 

for each period (Figure 1). It should be noted that we assumed that the land-cover in those areas with missing 

would remain stable during this period. 250 

In our previous works (Zhang et al., 2019; Zhang et al., 2018), we demonstrated that the spectral 

consistency between the reference period and other periods would affect the capacity for spectral 

generalization. In this study, some measures were taken to ensure the highest possible spectral consistency in 

the Landsat composited imagery for the reference period and other periods: 1) the “selection-based” strategy 

was applied to ensure that the composited imagery could characterize the reflective characteristics of the land 255 

surface; 2) the seasonal BAP method was used to guarantee the phenological consistency of each set of 

seasonally composited imagery. However, was a small difference in the spectral response between Landsat 

sensors (TM, ETM+ and OLI) (Roy et al., 2016), and some factors (including the number of available Landsat 

observations, frequency of cloud and shadow, etc.) caused small temporal difference in the seasonal 

composites between the reference period and the other periods. Therefore, to further ensure the spectral 260 

consistency of each seasonal composite, the relative radiometric normalization method was applied before 

deriving training reflectance spectra. Specifically, as we migrated the reflectance spectra of impervious 

surfaces from 2020 to other periods, the seasonal composites in 2020 were the dependent variables (𝜌𝑅(𝜆𝑖)): 

𝜌𝑅(𝜆𝑖) = 𝛼𝑖 × 𝜌𝑡(𝜆𝑖) + 𝛽𝑖 

where 𝜌𝑡(𝜆𝑖) is the surface reflectance in band 𝜆𝑖 in the period 𝑡 (𝑡 = 1985, 1990,… , 2015), and 𝛼𝑖 and 265 

𝛽𝑖 are the slope and intercept of the linear regression model.  

3.1.2 Deriving training samples and maximum impervious surface extent 

As opposed to the traditional method of collecting training samples based on visual interpretation, in this 

study, the global training samples, including those of the impervious surface and the pervious surface, were 

automatically derived from the earlier GLC_FCS30-2020 land-cover products. Specifically, our previous 270 

work (Zhang et al. (2020)) concluded that the pervious surfaces contained several land-cover types (cropland, 

forest, grassland, bare land, etc.) and some of them shared similar spectral characteristics with the impervious 

surfaces. For example, bare land was spectrally similar to the high-reflectance impervious surfaces because 

composition materials of the impervious surface, including the cement bricks and stone, were also present in 
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the bare land. Meanwhile, cropland was also easily confused with impervious surfaces, especially in the cases 275 

of some rural buildings (Sun et al., 2019), because both are composed of low-reflectance vegetation and 

high-reflectance artificial materials, or bare soil. Therefore, it was necessary to split the pervious surfaces into 

three sub-classes (cropland, bare land and other pervious surfaces) when deriving training samples. 

In addition, some studies have quantitatively demonstrated that the distribution, balance and size of 

training samples affect the classification accuracy (Jin et al., 2014; Mellor et al., 2015; Zhu et al., 2016). For 280 

example, Jin et al. (2014) compared two sample allocation processes (proportional to area and equal 

allocation), and found that proportional allocation achieved a better performance than equal allocation; 

however, the impervious surface comprised more sparse land-cover types compared to the pervious surfaces 

in this study. Therefore, similar to our previous work on global impervious surface mapping (Zhang et al., 

2020), training samples with equal allocation were used here to guarantee training sample balance and to 285 

capture as effectively as possible the spectral heterogeneity of impervious surfaces. Meanwhile, as the spatial 

distribution of impervious surfaces varies in different regions, and we derived training samples on a global 

scale, the continents with more sparse impervious surfaces (South America, Africa and Oceania) would lack 

sufficient samples to characterize their impervious surfaces. In order to further ensure that the training samples 

were locally adaptive, we adopted the tiled solution used in (Zhang et al., 2021), splitting the global land-area 290 

into approximately 961 5°×5° geographical tiles (Figure 4), and independently deriving training samples for 

each geographical tile. Furthermore, the impervious layer in the GLC_FCS30 was shown to have a user’s 

accuracy of 93.2% and a producer’s accuracy of 94.8% (Zhang et al., 2020), which guarantees the reliability 

of the impervious training samples. To further improve the accuracy of the training samples, corrosion 

morphological filtering with 3 × 3 pixels window was applied to the previous impervious layer, because a 295 

large number of mixed pixels and misclassifications usually occur at the boundaries of impervious objects. 

Further, as for the collection of pervious samples, corrosion morphological filtering with a 3 × 3 pixels 

window was also used on the GLC_FCS30-2020 land-cover products; then, the three sub-classes of pervious 

samples (cropland, bare land and other pervious surfaces) were automatically sampled from the filtered 

GLC_FCS30 products. 300 

Lastly, although the impervious layer in GLC_FCS30-2020 had an omission error of only 5.2% (Zhang et 

al., 2020), we still combined multiple global 30 m impervious surface products (GAIA-2018, GHSL-2014, 

GlobeLand30-2020 and impervious layer in GLC_FCS30-2020) to capture all the impervious surfaces as 

effectively as possible. Therefore, the maximum area of impervious surface, derived via the union of these 

four global impervious surface products, was used as the boundary of subsequent time-series-independent 305 

classifications. 

3.2 Spectral generalization classification and temporal consistency checking 

As mentioned before, the reflectance spectra of impervious surfaces in 2020 were migrated to other 

periods, while the pervious samples in 2020 could be directly transferred to other periods because of the 

irreversibility assumption. As opposed to traditional spectral generalization classification methods, which 310 

temporally migrate the reflectance spectra of all land-cover types (Zhang et al., 2019), in this study, we 

needed to independently train the classification models at each period because the reflectance spectra of the 

pervious surfaces varied with the period. In addition, our previous work (Zhang et al., 2021) concluded that 

there are two options for large-area or global-scale classification, including global classification modeling and 

local adaptive modeling. The global modeling strategy, using all training samples to build a single 315 
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classification model and then applying the model for the whole world, usually had greater classification 

efficiency and lower sample size requirements than local adaptive modeling (Zhang and Roy, 2017). Local 

adaptive modeling firstly splits the large area into multiple local regions, and then independently trains the 

classification models in each region using corresponding regional samples. Zhang and Roy (2017) and 

Radoux et al. (2014) quantitatively compared these two modeling strategies, and found that local adaptive 320 

modeling performed better than global modeling, because the former increased the sensitivity and fitting 

ability of the model for the region. Therefore, similar to in our previous work on global land-cover mapping 

(Zhang et al., 2021), the global land-area was divided into 961 5°×5° geographical tiles (Figure 4) for local 

adaptive modeling. 

 325 

Figure 4. The spatial distribution of 961 5°×5° geographical tiles for local adaptive modeling. The background 

imagery comes from the National Aeronautics and Space Administration (https://visibleearth.nasa.gov). 

Furthermore, the random forest (RF) classification model has significant advantages over other 

classification models (such as decision tree, support vector machine and neural network), including: 1) higher 

computation efficiency and classification accuracy; 2) a stronger ability to process high-dimensional data and 330 

resist training sample errors; 3) simpler parameter settings (Belgiu and Drăguţ, 2016; Du et al., 2015; Gislason 

et al., 2006). Therefore, the RF classifier was selected to produce our impervious surface dynamic time-series 

products. The RF classifier only contains two adjustable parameters (the number of decision trees (Ntree) and 

the number of selected prediction variables (Mtry)), and Belgiu and Drăguţ (2016) quantitatively analyzed the 

relationship between the classification accuracy and these two parameters, finding that the Ntree had a greater 335 

impact on classification accuracy than Mtry and suggesting that these two parameters should take default 

values. As such, we defined the Ntree as 500 and Mtry as the square root of the total number of input features. 

Lastly, as the impervious surface time-series products were produced by independent classification, it 

was necessary to use the post-processing method to optimize the impervious time-series products from 1985 

to 2020 and minimize the influence of classification error. Over the past few years, many post-processing 340 

methods have been proposed, including maximum a posteriori Markov random fields (Cai et al., 2014) and 
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temporal consistency checks (Li et al., 2015), both of which use contextual spatiotemporal information and 

prior knowledge to reduce the illogical land-cover transitions caused by classification error. In this study, the 

“temporal consistency correction” proposed by (Li et al., 2015) was applied to optimize our impervious 

time-series products. This mainly comprised procedures of spatiotemporal filtering and illogical transition 345 

checking, the former of which iteratively calculates the probability of the same land-cover pixels occurring in 

the neighborhood so as to reduce the influence of classification error caused by individual classifications, and 

the latter mainly employed the irreversibility assumption to remove illogical transitions from impervious 

surface to pervious surface.  

3.3 Accuracy assessment 350 

To comprehensively assess the performance of our global 30 m impervious surface dynamic dataset, 

sample-based and comparison-based methods were applied. Specifically, the sample-based validation method 

used the multitemporal impervious surface validation samples to calculate four accuracy metrics, including the 

overall accuracy and kappa coefficient, the producer’s accuracy (measuring the omission error) and the user’s 

accuracy (measuring the omission error) (Olofsson et al., 2014). Meanwhile, as opposed to traditional 355 

period-by-period accuracy assessments, we categorized the time-series impervious surface dynamic into 9 

independent strata, including: pervious surfaces, impervious surfaces before 1985, and expanded impervious 

surfaces during 1990-1995, 1995-2000, 2000-2005, 2005-2010, and 2015-2020. We then calculated a 

comprehensive confusion matrix for these nine strata.  

In addition, the comparison-based method used four global 30 m impervious surface products (GAIA, 360 

GHSL, NUACI and GlobeLand30) with multiple epochs as the comparative dataset for analyzing the 

performance of our GISD30 products. Specifically, we compared the time-series impervious areas of five 

products in six continents, and further analyzed the spatial consistency between GISD30 and four comparative 

datasets at the global scale. Further, we selected three types of cities (mega-cities, tropical cities and arid cities) 

to illustrate the performance of five global 30 m impervious surface products used for capturing the 365 

spatiotemporal dynamic. 

4 Results  

4.1 The spatiotemporal dynamics of impervious surfaces from 1985 to 2020 

Figure 5 illustrates the spatial distributions of global 30 m impervious surface time-series maps for 

1985-2020, with intervals of 5 years. Intuitively, as the world’s main impervious surfaces and economic 370 

activities are concentrated in the northern hemisphere, the intensity of impervious surface expansion in the 

northern hemisphere was more significant than that in the southern hemisphere. Furthermore, the impervious 

surfaces have undergone rapid urbanization in past 35 years, especially in Asia. For example, the impervious 

surface areas in India and China in 1985 were mostly low, but many low-density areas (including southeast 

China, central India, etc.) were transformed into high-density regions by 2020.  375 
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Figure 5. The spatial distributions of global 30 m impervious surface time-series results from 1985 to 2020 

with intervals of 5 years. Each pixel represents the fraction of impervious surface within each 0.05°×0.05° 

spatial unit. 

Figure 6 quantitatively summarizes the impervious surface areas and their changes on six continents from 380 

1985 to 2020. Overall, the global impervious surface area has doubled in the past 35 years, from 5.116×105 

km2 in 1985 to 10.871×105 km2 in 2020. Specifically, Asia experienced the largest increase in impervious 

surface area compared to other continents, with a total increase of 2.946×105 km2 (from 1.908×105 km2 in 

1985 to 4.854×105 km2 in 2020), followed by North America (from 1.202×105 km2 to 2.188×105 km2), Europe 

(from 1.330×105 km2 to 2.168×105 km2), Africa (from 0.264×105 km2 to 0.725×105 km2), and South America 385 

(from 0.298×105 km2 to 0.735×105 km2), and Oceania experienced lowest urbanization, with an increase of 

0.088×105 km2 over the past 35 years. In addition, the proportion of impervious area on three continents, 

namely, Asia, Africa and South America, obviously increased, and the proportions of the remaining three 

continents (Europe, North America and Oceania) declined (Figure 6b). Specifically, the proportion of 

impervious area in Asia increased the most, from 37.3% to 44.7%, while the proportion in Europe clearly 390 

decreased, from 26.0% to 20.1%. Lastly, Figure 6d illustrates the impervious surface expansion ratio of six 

continents in 1985-2020. Africa displayed the fastest expansion ratio compared to other continents—the 

impervious area in Africa was 1.74 times greater than that in 1985, followed by Asia and South America, with 

expansion ratios of 154.4% and 146.4% over the period, respectively. Comparatively, as Europe and North 

America had large impervious surface areas in 1985, their impervious area expansion ratios were relatively 395 

low. Meanwhile, the expansion rate of impervious surface area on six continents after 2000 was significantly 

faster than before 2000. 
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Figure 6. The expansion of impervious surfaces on each continent over the period of 1985-2020. (a) The 

impervious areas of six continents in each period. (b) The proportion of impervious areas on six continents 400 

from 1985 to 2020. (c-d) The increased impervious area and corresponding expansion ratio on each continent. 

Figure 7 quantitatively measures the growth of impervious surfaces in various countries around the world 

over the period of 1985-2020. China underwent the largest increase in impervious area in the last 35 years, 

with an increase of 1.31×105 km2, followed by America and India both exceeding 4.0×104 km2, and Russia 

and Brazil exceeding 2.0×104 km2. Meanwhile, from the perspective of spatial distribution, countries in Asia 405 

and North America displayed a higher increase in impervious area than those in other continents, especially 

East Asian and South Asian countries. In comparison, most countries in Africa underwent relatively little 

impervious surface growth, with an increase of less than 4000 km2 over the past 35 years. Although Europe is 

a center of global economic activity, the increased impervious area in European countries was not significant 

compared with North America and Southeast Asia, and the average increase in area was less than 8000 km2. 410 

In addition, Figure 7 shows the sum of the impervious surface area in the meridional and zonal directions in 

1985 (blue) and 2020 (red), with a step of 0.05°, respectively. Firstly, the meridional statistics indicate that the 

impervious surface in 1985 was more evenly distributed in the meridional direction than that in 2020. In 2020, 

there were four distinct peak intervals: 100°W~70°W (covering eastern United States), 0°~50°E (containing 

most European countries), 70°E~90°E (covering the whole of India) and 100°E~120°E (containing many 415 

Southeast Asia countries and China). Meanwhile, the increase in impervious area in the Eastern Hemisphere 

was significantly larger than that in the Western Hemisphere, and the maximum increase in impervious area 

was located near 120°E, containing China’s three major economic deltas (Yangtze River Delta, Pearl River 

Delta and Jing-Jin-Ji metropolitan region). Next, the zonal statistics indicate that the vast majority of 

impervious surfaces in the world are distributed between approximately 20°N and 60°N, the area of which 420 

contains most of the world’s economically developed and high-density countries. Similarly, the increase in 

13

https://doi.org/10.5194/essd-2021-285

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 7 December 2021
c© Author(s) 2021. CC BY 4.0 License.



impervious area over the past 35 years was also concentrated in the Northern Hemisphere, and the increase 

between 20°N~60°N accounted for 70.75% of the total increase in the world. 

 

Figure 7. The expansion of impervious area in each country over the period 1985-2020, and meridional and 425 

zonal impervious area statistics for 1985 (blue) and 2020 (red), with a step of 0.05°. 

4.2 Accuracy assessment using validation samples 

Table 1 quantitatively assesses the performance of our time-series global impervious surface dynamic 

products using 18,540 multitemporal validation samples. The global impervious dynamic products achieved 

the overall accuracy of 91.5% and a kappa coefficient of 0.866 in the nine-strata validation system. 430 

Specifically, from the perspective of user’s accuracy, the pervious surface had the highest accuracy (98.5%) 

because we used the maximum impervious area in 2020 to monitor the impervious surface dynamics, and the 

prior impervious layer in GLC_FCS30-2020 also had the high user’s accuracy of 93.2% (Zhang et al., 2020). 

The impervious surface before 1985 achieved an accuracy of 92.4%, mainly because the stable impervious 

area in 1985 was obviously larger than the expanded area over each 5-year period, and capturing the 435 

expansion impervious surface was also more difficult. Furthermore, the measurements of expansion in 

impervious surfaces in seven 5-year periods had similar performances, with an accuracy of approximately 

72%. Confusion mainly occurred in temporally adjacent periods because the transition from a pervious surface 

to impervious surface is a slow process and spans a long period of time, which directly increases the difficulty 

of monitoring it. In addition, the producer’s accuracy had a similar distribution law to the user’s accuracy for 440 

each strata in Table 1. However, the producer’s accuracy for the expansion of impervious surface after 2000 

was higher than that before 2000, which was mainly affected by the available Landsat observations shown in 

Figure 1. Similarly, Gong et al. (2020) also found that the monitoring uncertainty before 2000 was greater 

than after 2000. 
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Table 1. The confusion matrix of our global 30 m impervious surface dynamic products using 18,540 445 

validation samples. 

 
P.S.  1985 85~90 90~95 95~00 00~05 05~10 10~15 15~20 Total U.A. 

P.S. 9840 11 20 14 22 21 14 24 20 9986 0.985 

1985 200 4140 31 41 36 12 14 4 2 4480 0.924 

85~90 10 70 252 10 3 4 2 1 0 352 0.716 

90~95 21 42 16 259 12 5 1 3 0 359 0.721 

95~00 36 68 10 23 418 11 9 6 4 585 0.715 

00~05 56 40 8 30 34 587 25 14 5 799 0.735 

05~10 30 37 8 14 14 32 511 18 4 668 0.765 

10~15 36 47 7 11 16 22 47 528 11 725 0.728 

15~20 39 56 5 2 9 8 12 34 421 586 0.718 

Total 10268 4511 357 404 564 702 635 632 467 18540  

P.A. 0.958 0.918 0.706 0.641 0.741 0.836 0.805 0.835 0.901  

O.A. 0.915 

Kappa 0.866 

Note: P.S.: pervious surface; 1985: impervious surface before 1985; 85~90: expansion of impervious surface 

during 1985~1990; …, 15~20: expansion of impervious surface during 2015~2020; U.A.: user’s accuracy; 

P.A.: producer’s accuracy; O.A.: overall accuracy. 

Figure 8 illustrates the confusion proportions of the pervious surface, the stable impervious surface and 450 

the expanded impervious surface over each 5-year period, according to the confusion matrix in Table 1. 

Obviously, the pervious surface and stable impervious surface before 1985 had the lowest confusion 

proportions, because we already knew the maximum impervious surface area for 2020. Next, the confusion 

proportion between the expansion of impervious surface before 2000 and the stable impervious surface in 

1985 was approximately 10~20%, mainly because the Landsat imagery before 2000 was sparse, and we 455 

assumed that the land-cover in areas missing Landsat data would remain stable. Furthermore, there was also a 

certain degree of confusion between the expanded impervious surface and the pervious surface (approximately 

5%), because urbanization generally occurred on the peripheries of cities, and thus was more likely to be 

confused with pervious surfaces. Lastly, there was also much confusion between seven periods of impervious 

surface expansion, especially for the three temporally adjacent periods, because the transition from pervious 460 

surface to impervious surface is a long and slow process. Similarly, Liu et al. (2019) used the continuous 

change detection method to capture impervious surface dynamics and found a temporal bias between the 

detected change time and the actual change time. 
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Figure 8. The confusion proportions of pervious surfaces, impervious surfaces in 1985, and increased 465 

impervious surfaces from 1985 to 2020. 

4.3 Cross-comparisons with other global 30 m impervious surface products 

4.3.1 Cross-comparison at global scale 

To comprehensively analyze the performances of our impervious surface dynamic time-series products, 

four global 30 m multitemporal impervious surface products (GAIA, NUACI, GHSL and GlobeLand30) were 470 

selected as the comparative datasets. Figure 9 illustrates the total impervious area of five global impervious 

surface products on six continents over the period of 1985-2020. Overall, five global impervious surface 

products accurately captured the rational spatiotemporal trend over the past 35 years—the impervious surface 

area of all continents had steadily increased over time, and the increased impervious area in the Northern 

Hemisphere was obviously greater than that in the Southern Hemisphere.  475 

Specifically, GISD30, GAIA, NUACI and GHSL showed great area-consistency in North America, while 

GlobeLand30 displayed a degree of overestimation, and its estimated area was almost 0.5×105 km2 higher than 

that for other products. Furthermore, on the remaining five continents, GAIA showed the lowest total 

impervious area compared with the other global 30 m impervious products. Similarly, the comparison in Gong 

et al. (2020) also indicated that GAIA showed the lowest impervious area among several global 30 m 480 

impervious surface products (NUACI, GHSL and GlobeLand30). As the NUACI only monitored the global 

urban dynamics and excluded the rural areas (Liu et al., 2018), it was expected that the total impervious areas 

given by NUACI would be lower than those given by GISD30, GHSL and GlobeLand30. As for GHSL, its 

impervious area varied greatly on different continents; for example, the total impervious area was close to that 

of GISD30 in North America and Europe, of NUACI in Asia, South America and Oceania, and of 485 

GlobeLand30 in Africa. However, the impervious surface areas assessed by GHSL were generally lower than 

those of GISD30 and GlobeLand30. Lastly, GlobeLand30 gave the largest total impervious area for each 

continent, mainly because it also defined the vegetation in cities as artificial surfaces (Chen et al., 2015).  
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Figure 9. The impervious area of five global 30 m impervious surface products on six continents over the 490 

period of 1985-2020.  

As the five global 30 m impervious surface products displayed large differences in estimated global total 

impervious area, it was necessary to further assess the performances of these products. Figure 10 illustrates the 

spatial patterns of these products after aggregation to the resolution of 0.05°. Clearly, there was great spatial 

consistency between the GISD30, GHSL and GlobeLand30 products—all of them accurately captured the 495 

actual patterns of global impervious surfaces, mainly those concentrated between approximately 20°N and 

60°N. The NUACI products displayed the smallest impervious surface areas and the lowest intensity 

compared to the other products, especially in Europe and China, because it only identified urban pixels and 

excluded rural areas (Liu et al., 2018). Although the GAIA simultaneously identified urban and rural pixels, 

the impervious surface areas in Europe and Asia were significantly smaller than in the GISD30, GHSL and 500 

GlobeLand30 products. Furthermore, GHSL showed smaller impervious areas and a lower intensity than 

GISD30 and GlobeLand30 in India and China, the two most populous countries in the world. Lastly, as 

GlobeLand30 defined vegetation in cities as artificial surfaces (Chen et al., 2015), the impervious area given 

by GlobeLand30 for America was greater than that given by GISD30 and GHSL, because many cities in 

America display a serious mix of houses and vegetation. 505 
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Figure 10. The spatial patterns of five global 30 m impervious surface products after aggregation to the 

resolution of 0.5°. 

To quantitatively analyze the consistency of five global 30 m impervious surface products, the 

scatterplots of four products against GISD30 are illustrated in Figure 11. Firstly, the consistency between 510 

GAIA and GISD30 increased with time, and the regression slope also approached 1. In 1985, most of the 

points were concentrated below the 1:1 line, and the slope was much less than 1. However, by 2020, the 

scatter plots were distributed on both sides of the 1:1 line, and showed great consistency, with an R2 of 0.823 

and an RMSE of 0.031. Secondly, as NUACI did not contain rural pixels, many scatter points were below the 

1:1 line, and the consistency between NUACI and GISD30 was lower than that of the GAIA and GISD30 515 

products (the maximum R2 was 0.727). Further, as GlobeLand30 defined the vegetation in cities as artificial 

surfaces (Chen et al., 2015), many scatter points were distributed above the 1:1 line, and the regression slopes 

of the three periods were also close to 1. Lastly, there was greater agreement between GISD30 and GHSL than 

between other products, especially for 2000, with the highest R2 of 0.837, an RMSE of 0.025 and a regression 

slope of 0.985. 520 
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4.3.2 Cross-comparison at regional scale 

To understand the performance of five global 30 m impervious surface products used for monitoring 

spatiotemporal dynamics, we randomly selected six cities after considering city size, spatial distribution and 525 

urban landscapes. Moscow and Shanghai were the representative mega cities, Bangkok and Jakarta were the 

cities in tropical regions (heavily affected by cloud and shadows), and Phoenix and Johannesburg were the 

representative cities for arid regions. Figure 12 illustrates the comparison between our GISD30 dynamic 

products and four comparative datasets for Moscow and Shanghai. NUACI suffered from overestimation for 

two cities, misclassifying much vegetation as an impervious surface. It also failed to capture the expansion 530 

of impervious surfaces in Shanghai—many cropland pixels before 2000 were identified as impervious 

surfaces. The GAIA product misidentified some old urban pixels (green color) as newly expanded 

impervious surfaces (red color) in Moscow, and it overestimated the expansion of impervious surfaces from 

2010 to 2020 in Shanghai. Specifically, according to the Landsat imagery, Shanghai’s fastest urban 

expansion occurred in 2000-2010, but the GAIA obviously lagged in this measurement. Furthermore, GHSL 535 

also could not accurately capture the spatiotemporal dynamics of impervious surfaces in detail. For example, 

it gave a low proportion of expanded impervious surfaces after 2000 in Shanghai, whereas in actuality, 

Shanghai experienced rapid urbanization after 2000. Lastly, although GlobeLand30 only measured the three 

epochs of 2000, 2010 and 2020 (its color scheme was different from other products), it showed a great 

ability to capture the spatiotemporal expansion of impervious surfaces in two cities, and showed higher 540 

consistency with our GISD30 products. 

 
Figure 12. Comparisons between the GISD30 dynamic products and four other datasets (the GAIA products 

developed by Gong et al. (2020), the NUACI developed by Liu et al. (2018), the GHSL developed by 

Florczyk et al. (2019), and the GlobeLand30 developed by Chen et al. (2015)) in the two representative 545 
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megacities of Moscow and Shanghai. In each case, the multi-epoch Landsat imagery, comprised by red, 

green and blue bands, came from the United States Geological Survey (https://earthexplorer.usgs.gov/). 

Figure 13 illustrates the performances of five impervious surface products in two cloud-contaminated 

cities (Bangkok and Jakarta). Clearly, GISD30 performed the best in monitoring the spatiotemporal 

dynamics of the impervious surfaces in these two cities. Comparatively, GAIA clearly underestimated the 550 

impervious surfaces in Bangkok, and many small impervious surface objects in the peripheral cities (rural 

buildings) were missed. As regards impervious dynamics, GAIA underestimated the expansion after 2010 in 

Bangkok, and also failed to capture the expansion pattern from the city center to the outskirts in Jakarta. On 

the contrary, NUACI suffered from serious overestimation in two cities, and misidentified some croplands 

on the peripheries as impervious surfaces, especially in Jakarta. Meanwhile, it also failed to monitor the 555 

spatiotemporal dynamics of impervious surfaces in two cities, while the expansion area from 1985 to 2020 

was severely underestimated and the impervious area before 2000 was overestimated. GHSL captured the 

distribution of impervious surfaces before 1985; however, the expansion of impervious surfaces over the 

past 35 years was seriously underestimated in two cities. Lastly, GlobeLand30 performed well in the city 

center, but it also missed many small impervious surface objects in the peripheral cities as a result of the 560 

minimum mapping unit of 4 × 4 pixels for each impervious object (Chen et al., 2015). In addition, 

GlobeLand30 performed better in Bangkok than in Jakarta when monitoring impervious surface expansion, 

because it overestimated the expansion from 2010 to 2020 in Jakarta. 

 

Figure 13. The comparisons between GISD30 and four reference datasets (the GAIA products developed by 565 

Gong et al. (2020), the NUACI developed by Liu et al. (2018), the GHSL developed by Florczyk et al. 

(2019), and the GlobeLand30 developed by Chen et al. (2015)) in the two cloud-contaminated cities of 
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Bangkok and Jakarta. In each case, the multi-epoch Landsat imagery, comprised by red, green and blue 

bands, came from the United States Geological Survey (https://earthexplorer.usgs.gov/). 

Lastly, Figure 14 compares between our GISD30 and four reference products in two arid cities 570 

(Phoenix and Johannesburg). Overall, the highest consistency was found between GISD30 and 

GlobeLand30, because both accurately captured the spatial patterns of impervious surfaces and the 

expansion of impervious surfaces on the peripheries of cities. NUACI showed larger impervious areas than 

the other four products, but the corresponding Landsat imagery indicates that NUACI misidentified many 

pervious surfaces (bare land) as impervious surfaces, especially in Johannesburg. Meanwhile, NUACI 575 

suffered an obvious stamping effect mainly caused by temporal differences among adjacent Landsat image 

sets, and also failed to capture the time of the expansion of impervious surfaces, especially in Johannesburg. 

GAIA performed well in identifying the impervious surface area and capturing the time of expansion in 

Phoenix, but it suffered from overestimation in the Johannesburg, where much arid bare land was wrongly 

identified as an impervious surface in the early stages. Furthermore, as GHSL only covered the period of 580 

1975-2014, it makes sense that it registered less expanded impervious surface than GISD30 and 

GlobeLand30. There was also great consistency between GHSL, GISD30 and GlobeLand30 for these two 

cities.  

 

Figure 14. The comparisons between GISD30 and four reference datasets (the GAIA products developed by 585 

Gong et al. (2020), the NUACI developed by Liu et al. (2018), the GHSL developed by Florczyk et al. 

(2019), and the GlobeLand30 developed by Chen et al. (2015)) in the two representative arid cities of 

Phoenix and Johannesburg. In each case, the multi-epoch Landsat imagery, comprised by red, green and 

blue bands, came from the United States Geological Survey (https://earthexplorer.usgs.gov/). 

5 Discussion 590 
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5.1 Advantages of the proposed method for monitoring impervious surface dynamics 

In contrast to traditional independent classification monitoring methods, which require expensive 

resources to collect multitemporal training samples (Gao et al., 2012; Zhang and Weng, 2016), we used prior 

global land-cover products and the spectral generalization strategy to automatically monitor the impervious 

surface dynamics. Specifically, as for the reliability of the training samples, the impervious layer in the 595 

GLC_FCS30-2020 land-cover products achieved a user’s accuracy of 93.2% and a producer’s accuracy of 

94.8% (Zhang et al., 2020), and morphological filtering was also applied to further ensure the reliability of 

each sample in 2020. As it was difficult to assess the accuracy of all the training samples, we randomly 

selected 10,000 impervious surface samples from the global sample pool, and found that these impervious 

training samples achieved an accuracy of 95.52% in 2020. Therefore, the training samples derived in Section 600 

3.2 were accurate enough for monitoring impervious surface dynamics.  

In addition, contrary to other spectral generalization classification methods, which migrated the 

reflectance spectra of all land-cover types (Dannenberg et al., 2016; Phalke and Özdoğan, 2018; Zhang et al., 

2019), we only migrated the reflectance spectra of impervious surfaces measured in 2020 to other periods, 

and simultaneously transferred the pervious samples to other periods based on the assumption of 605 

irreversibility. Therefore, we needed to independently train the classification models in each period using the 

migrated reflectance spectra of impervious and pervious surface samples. Correspondingly, our temporal 

adaptive models achieve better performances than traditional generalized models used for monitoring 

impervious surface dynamics. Furthermore, many studies have demonstrated that the spectral consistency 

between migrated spectra and classified imagery directly affects classification accuracy (Woodcock et al., 610 

2001; Zhang et al., 2018). In this study, we used continuous Landsat imagery to preclude the effects of 

different sensors, and adopted a seasonally composited method with relative radiometric normalization to 

minimize the influence of temporal difference. Therefore, our temporally adaptive spectral generalization 

method was suitable for the impervious surface monitoring of long time-series. 

5.2 Limitations and prospects of the global impervious surface dynamic dataset 615 

In this study, we have proposed a novel automatic method to successfully produce a global 30 m 

impervious surface dynamic dataset over the period of 1985-2020, and quantitatively and qualitatively 

demonstrated that our dataset performed well in capturing the spatial distributions and spatiotemporal 

dynamics of impervious surfaces; however, there were still some weaknesses in our impervious surface 

dynamic products. Firstly, we assumed that the transition from pervious surface to impervious surface was 620 

irreversible over the monitoring period, which caused our method or product to fail to capture the transition 

from impervious to pervious surface (such as demolition caused by urban greening), as well as many 

changes that took place in impervious surfaces (such as urban demolition and reconstruction). Recently, Liu 

et al. (2019) used continuous change detection to successfully capture these reversible and multiple changes 

in Nanchang, China; however, the implementation efficiency of the method was low, and whether it can 625 

support the monitoring of global impervious surface dynamics remains to be verified. Therefore, our future 

work must exploit the advantages of a continuous change detection model to improve the effectivity of 

monitoring the spatiotemporal dynamics of impervious surfaces. 

Our previous study (Zhang et al., 2020) quantitatively demonstrated that a combination of multisource 

remote sensing datasets could significantly improve the ability to recognize impervious surfaces, especially 630 

in semi-arid or arid regions, where bare land generally shares spectral characteristics with impervious 
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surfaces. In addition, the Landsat imagery available before 2000 was relatively sparse (illustrated in the 

Figure 1), which directly affects the monitoring accuracy of impervious surfaces, and this explains why the 

user’s accuracy of the expansion of impervious surfaces before 2000 was significantly lower than after 2000 

(Table 1). Similarly, Gong et al. (2020) also found that the availability of Landsat imagery had a positive 635 

relationship with impervious surface monitoring accuracy when creating GAIA global impervious surface 

products. Therefore, our future work should combine multisource remote sensing imagery (such as synthetic 

aperture radar (SAR), nighttime light (NTL) and AVHRR data) as auxiliary data to further improve 

impervious surface monitoring accuracy. 

6 Data availability 640 

The global 30 m impervious surface dynamic dataset from 1985 to 2020 is free to access at 

http://doi.org/10.5281/zenodo.5220816 (Liu et al., 2021b). The global dynamic dataset was used to label the 

expansion information in a single band; specifically, the pervious surface and the impervious surface before 

1985 were respectively labeled 0 and l, and the expanded impervious surfaces in the periods 1985-1990, 

1990-1995, 1995-2000, 2000-2005, 2005-2010, 2010-2015 and 2015-2020 were labeled 2,3,4,5,6,7 and 8. 645 

Furthermore, in order to facilitate the use of these data, the global dynamic products were split into 961 5°×5° 

tiles in the GeoTIFF format, named “GISD30_1985-2020_E/W**N/S**.tif”, where ‘E/W**N/S**’ is the 

latitude and longitude coordinates found in the upper left corner of the tile data. 

7 Conclusion 

In this study, a novel global 30 m impervious surface dynamic dataset for 1985 to 2020 was produced 650 

by combining time-series Landsat imagery and the spectral generalization method. Specifically, we first 

migrated the reflectance spectra of impervious surfaces, and simultaneously transferred the training samples 

of pervious surfaces to other periods, to automatically monitor the spatiotemporal dynamics of impervious 

surfaces from 1985 to 2020. Then, we combined the local adaptive modeling and time-series Landsat 

imagery to independently produce impervious surface time-series products. Lastly, the spatiotemporal 655 

consistency checking method was applied to independent impervious surface products in order to minimize 

the effects of classification errors and ensure the reliability and spatiotemporal consistency of the final 

impervious surface dynamic dataset. 

Overall, the global 30 m impervious surface dynamic dataset we produced accurately captured the 

expansion pattern of impervious surfaces over the past 35 years. The quantitative results indicate that the 660 

global impervious surface area doubled in the past 35 years, from 5.116×105 km2 in 1985 to 10.871×105 km2 

in 2020, and Asia underwent the greatest increase in impervious surface area compared to other continents, 

with a total increase of 2.946×105 km2. Meanwhile, we also found that the expansion rate of impervious 

surface on six continents after 2000 was significantly faster than before 2000. In addition, the global 30 m 

impervious surface dynamic dataset was validated by 18,540 multitemporal validation samples, and our 665 

dataset achieved the overall accuracy of 91.5% and a kappa coefficient of 0.866. Lastly, quantitative and 

qualitative comparisons between our GISD30 and four comparative impervious surface products (GAIA, 

GHSL, NUACI and GlobeLand30) indicate that our GISD30 products performed the best in capturing the 

spatial distributions and spatiotemporal dynamics of impervious surfaces. Therefore, it was concluded that 

our global 30 m impervious surface dynamic dataset was an accurate product, and could provide vital 670 

support for monitoring regional or global urbanization or carrying out related tasks. 
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